Representations for Functionals of Hilbert Space Valued Diffusions
نویسندگان
چکیده
This paper contains two main results. The first is a variational representation for the expectation of a measurable function of a Hilbert space valued Brownian motion, when the function is uniformly positive and bounded from above and the Brownian motion has a trace class covariance. This representation is then applied to derive the second main result, which is the large deviation principle for a class of Hilbert space valued diffusions with small noise.
منابع مشابه
Hilbert Space Representations of Decoherence Functionals and Quantum Measures
We show that any decoherence functional D can be represented by a spanning vector-valued measure on a complex Hilbert space. Moreover, this representation is unique up to an isomorphism when the system is finite. We consider the natural map U from the history Hilbert space K to the standard Hilbert space H of the usual quantum formulation. We show that U is an isomorphism from K onto a closed s...
متن کاملEquivalence of K-functionals and modulus of smoothness for fourier transform
In Hilbert space L2(Rn), we prove the equivalence between the mod-ulus of smoothness and the K-functionals constructed by the Sobolev space cor-responding to the Fourier transform. For this purpose, Using a spherical meanoperator.
متن کاملA Representation for Characteristic Functionals of Stable Random Measures with Values in Sazonov Spaces
متن کامل
Best proximity pair and coincidence point theorems for nonexpansive set-valued maps in Hilbert spaces
This paper is concerned with the best proximity pair problem in Hilbert spaces. Given two subsets $A$ and $B$ of a Hilbert space $H$ and the set-valued maps $F:A o 2^ B$ and $G:A_0 o 2^{A_0}$, where $A_0={xin A: |x-y|=d(A,B)~~~mbox{for some}~~~ yin B}$, best proximity pair theorems provide sufficient conditions that ensure the existence of an $x_0in A$ such that $$d(G(x_0),F(x_0))=d(A,B).$$
متن کاملNonlinear Viscosity Algorithm with Perturbation for Nonexpansive Multi-Valued Mappings
In this paper, based on viscosity technique with perturbation, we introduce a new non-linear viscosity algorithm for finding a element of the set of fixed points of nonexpansivemulti-valued mappings in a Hilbert space. We derive a strong convergence theorem for thisnew algorithm under appropriate assumptions. Moreover, in support of our results, somenumerical examples (u...
متن کامل